Rectilinear Crossing Minimization

نویسندگان

  • Klara Reichard
  • Peter Sanders
  • Ignaz Rutter
  • Marcel Radermacher
چکیده

This thesis deals with the rectilinear crossing minimization problem, which is NP-hard [BD93]. More precisely, we propose a heuristic for computing a straight-line drawing of a general graph G which realizes a small rectilinear crossing number. Inspired by Gutwenger et al. [GMW05], we pursue an approach which extracts a planar subgraph that includes as many edges of G as possible and iteratively reinserts the missing edges into G. After each edge insertion nodes are moved in order to reduce the number of crossings in the current drawing. We fix the position of all nodes but one node v and move v to a position, that minimizes the number of crossings in the drawing. This position can be computed in an O((m ·dmax)) time-bound, with dmax denoting the maximum degree of a node in G. We evaluate several configurations of this algorithm, which use different strategies to avoid local optima. We compare these configurations to the spring embedder of Fruchterman and Reingold [FR91] on a variety of different graph classes and observe that each of our configurations yields drawings with a significantly lower rectilinear crossing number than the commonly used spring embedder. Furthermore, our algorithm finds solutions which are close to optimal on the complete graphs Kn for n ≤ 30. Deutsche Zusammenfassung Diese Arbeit beschäftigt sich mit dem rectilinear crossing minimization problem, das NP-schwer ist [BD93]. Wir schlagen eine Heuristik für das Berechnen einer geradlinigen Zeichnung eines beliebigen Graphen G vor, sodass diese Zeichnung eine kleine geradlinige Kreuzungszahl realisiert. Wir verfolgen einen Ansatz, der von Gutwenger et al. [GMW05] inspiriert ist. Unser Algorithmus extrahiert einen planaren Subgraph, der möglichst viele Kanten von G enthält. Die übrigen Kanten fügt der Algorithmus iterativ wieder hinzu. Nach jedem Einfügen einer Kante werden Knoten verschoben, um die Kreuzungszahl der Zeichnung zu reduzieren. Wir fixieren die Position von allen Knoten, bis auf einen Knoten v und positionieren v sodass die Anzahl an Kreuzungen in der Zeichnung minimiert wird. Diese Position kann in einer Laufzeit von O((m · dmax)) gefunden werden. Wir evaluieren einige Konfigurationen dieses Algorithmus mit unterschiedlichen Strategien zum Vermeiden lokaler Optima. Diese Konfigurationen vergleichen wir mit dem Spring-Embedder von Fruchterman und Reingold [FR91] auf unterschiedlichen Graph-Klassen und stellen fest, dass unsere Konfigurationen Zeichnungen mit signifikant weniger Kreuzungen erzeugen als der üblicherweise benutzte Spring-Embedder. Außerdem findet unser Algorithmus Lösungen, die auf den vollständigen Graphen Kn für n ≤ 30 fast optimal sind.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mathematical Programming Formulation of Rectilinear Crossing Minimization

In a rectilinear drawing of a simple graph G each vertex is mapped to a distinct point in the plane and each edge is represented by a straight-line segment with appropriate ends. The goal of rectilinear crossing minimization is to find a rectilinear drawing of G with as few edge crossings as possible. A new approach to rectilinear crossing minimization is presented including a formulation of th...

متن کامل

The Maximum of the Maximum Rectilinear Crossing Numbers of d-Regular Graphs of Order n

We extend known results regarding the maximum rectilinear crossing number of the cycle graph (Cn) and the complete graph (Kn) to the class of general d-regular graphs Rn,d. We present the generalized star drawings of the d-regular graphs Sn,d of order n where n + d ≡ 1 (mod 2) and prove that they maximize the maximum rectilinear crossing numbers. A star-like drawing of Sn,d for n ≡ d ≡ 0 (mod 2...

متن کامل

Toward the rectilinear crossing number of Kn: new drawings, upper bounds, and asymptotics

Scheinerman and Wilf [SW94] assert that “an important open problem in the study of graph embeddings is to determine the rectilinear crossing number of the complete graph Kn.” A rectilinear drawing of Kn is an arrangement of n vertices in the plane, every pair of which is connected by an edge that is a line segment. We assume that no three vertices are collinear, and that no three edges intersec...

متن کامل

A Linear Upper Bound on the Rectilinear Crossing Number

It is proved that the rectilinear crossing number of every graph with bounded tree-width and bounded degree is linear in the num-

متن کامل

Elie Feder And

We introduce the Orchard crossing number, which is defined in a similar way to the well-known rectilinear crossing number. We compute the Orchard crossing number for some simple families of graphs. We also prove some properties of this crossing number. Moreover, we define a variant of this crossing number which is tightly connected to the rectilinear crossing number, and compute it for some sim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017